Операции с указателями. Операции с указателями Что такое указатель в си

Хотелось бы с самого начала прояснить одну вещь - я не отношу себя к категории true-кодеров, сам учусь по специальности, не связанной с разработкой ПО, и это мой первый пост. Прошу судить по всей строгости. Итак, в свое время то ли по причине того, что я спал на лекциях, то ли я не особо вникал в эту тему, но у меня возникали некоторые сложности при работе с указателями в плюсах. Теперь же ни одна моя даже самая крохотная быдлокодерская программа не обходится без указателей. В данной статье я попытаюсь рассказать базовые вещи: что такое указатели, как с ними работать и где их можно применять. Повторюсь, изложенный ниже материал предназначен для новичков.


/* Ребят, в статье было найдено много ошибок. Спасибо тем людям, которые внесли свои замечания. В связи с этим - после прочтения статьи обязательно перечитайте комментарии */

1. Общие сведения

Итак, что же такое указатель? Указатель - это та же переменная, только инициализируется она не значением одного из множества типов данных в C++, а адресом, адресом некоторой переменной, которая была объявлена в коде ранее. Разберем на примере:

Void main(){ int i_val = 7; }
# Здесь ниже, конечно, я ребятки вам соврал. Переменная i_val - статическая, она явно будет размещена в стеке. В куче место выделяется под динамические объекты. Это важные вещи! Но в данном контексте, я, сделав сам себе замечание, позволю оставить себе все как есть, так что сильно не ругайтесь.

Мы объявили переменную типа int и здесь же ее проинициализировали. Что же произойдет при компиляции программы? В оперативной памяти, в куче, будет выделено свободное место такого размера, что там можно будет беспрепятственно разместить значение нашей переменной i_val . Переменная займет некоторый участок памяти, разместившись в нескольких ячейках в зависимости от своего типа; учитывая, что каждая такая ячейка имеет адрес, мы можем узнать диапазон адресов, в пределах которого разместилось значение переменной. В данном случае, при работе с указателями нам нужен лишь один адрес - адрес первой ячейки, именно он и послужит значением, которым мы проинициализируем указатель. Итак:

Void main(){ // 1 int i_val = 7; int* i_ptr = &i_val; // 2 void* v_ptr = (int *)&i_val }
Используя унарную операцию взятия адреса & , мы извлекаем адрес переменной i_val и присваиваем ее указателю. Здесь стоит обратить внимание на следующие вещи:

  1. Тип, используемый при объявлении указателя в точности должен соответствовать типу переменной, адрес которой мы присваиваем указателю.
  2. В качестве типа, который используется при объявлении указателя, можно выбрать тип void . Но в этом случае при инициализации указателя придется приводить его к типу переменной, на которую он указывает.
  3. Не следует путать оператор взятия адреса со ссылкой на некоторое значение, которое так же визуально отображается символом & .
Теперь, когда мы имеем указатель на переменную i_va l мы можем оперировать ее значением не только непосредственно с помощью самой переменной, но и с помощью указателя на нее. Посмотрим, как это работает на простом примере:

#include using namespace std; void main(){ int i_val = 7; int* i_ptr = &i_val; // выведем на экран значение переменной i_val cout << i_val << endl; // C1 cout << *i_ptr << endl; // C2 }

  1. Здесь все ясно - используем саму переменную.
  2. Во втором случае - мы обращаемся к значению переменной i_val через указатель. Но, как вы заметили, мы не просто используем имя указателя - здесь используется операция разыменования: она позволяет перейти от адреса к значению.
В предыдущем примере был организован только вывод значения переменной на экран. Можем ли мы непосредственно через указатель оперировать с значением переменной, на которую он указывает? Да, конечно, для этого они и реализованы (однако, не только для этого - но об этом чуть позже). Все, что нужно - сделать разыменование указателя:

(*i_ptr)++; // результат эквивалентен операции инкремента самой переменной: i_val++ // т.е. в данном случае в i_val сейчас хранится значение не 7, а 8.

2. Массивы

Сразу перейдем к примеру - рассмотрим статичный одномерный массив определенной длинны и инициализируем его элементы:

Void main(){ const int size = 7; // объявление int i_array; // инициализация элементов массива for (int i = 0; i != size; i++){ i_array[i] = i; } }
А теперь будем обращаться к элементам массива, используя указатели:

Int* arr_ptr = i_array; for (int i = 0; i != size; i++){ cout << *(arr_ptr + i) << endl; }
Что здесь происходит: мы инициализируем указатель arr_ptr адресом начала массива i_array . Затем, в цикле мы выводим элементы, обращаясь к каждому с помощью начального адреса и смещения. То есть:

*(arr_ptr + 0) это тот же самый нулевой элемент, смещение нулевое (i = 0),
*(arr_ptr + 1) - первый (i = 1), и так далее.

Однако, здесь возникает естественный вопрос - почему присваивая указателю адрес начала массива, мы не используем операцию взятия адреса? Ответ прост - использование идентификатора массива без указания квадратных скобок эквивалентно указанию адреса его первого элемента. Тот же самый пример, только в указатель «явно» занесем адрес первого элемента массива:

Int* arr_ptr_null = &i_array; for (int i = 0; i != size; i++){ cout << *(arr_ptr_null + i) << endl; } Пройдем по элементам с конца массива:
int* arr_ptr_end = &i_array; for (int i = 0; i != size; i++){ cout << *(arr_ptr_end - i) << endl; } Замечания:

  1. Запись array[i] эквивалентна записи *(array + i ). Никто не запрещает использовать их комбинированно: (array + i ) - в этом случае смещение идет на i , и еще на единичку. Однако, в данном случае перед выражением (array + i ) ставить * не нужно. Наличие скобок это «компенсирует.
  2. Следите за вашими „перемещениями“ по элементам массива - особенно если вам захочется использовать порнографический такой метод записи, как (array + i)[j].

3. Динамическое выделение памяти

Вот та замечательная плюшка, из-за которой я использую указатели. Начнем с динамических массивов. Зачастую при решении какой-либо задачи возникает потребность в использовании массива неопределенного размера, то есть размер этот заранее неизвестен. Здесь нам на помощь приходят динамические массивы - память под них выделяется в процессе выполнения программы. Пример:

Int size = -1; // здесь происходят какие - то // действия, которые изменяют // значение переменной size int* dyn_arr = new int;
Что здесь происходит: мы объявляем указатель и инициализируем его началом массива, под который выделяется память оператором new на size элементов. Следует заметить, что в этом случае мы можем использовать те же приемы в работе с указателями, что и с статическим массивом. Что следует из этого извлечь - если вам нужна какая - то структура (как массив, например), но ее размер вам заранее неизвестен, то просто сделайте объявление этой структуры, а проинициализируете ее уж позже. Более полный пример приведу чуть позже, а пока что - рассмотрим двойные указатели.

Что такое указатель на указатель? Это та же переменная, которая хранит адрес другого указателя „более низкого порядка“. Зачем он нужен? Для инициализации двумерного динамического массива, например:

Const int size = 7; // двумерный массив размером 7x7 int** i_arr = new int*; for(int i = 0; i != size; i++){ i_arr[i] = new int; }
А тройной указатель? Трехмерный динамический массив. Неинтересно, скажите вы, так можно продолжать до бесконечности. Ну хорошо. Тогда давайте представим себе ситуацию, когда нам нужно разместить динамические объекты какого-нибудь класса MyClass в двумерном динамическом массиве. Как это выглядит (пример иллюстрирует исключительно использование указателей, приведенный в примере класс никакой смысловой нагрузки не несет):

Class MyClass{ public: int a; public: MyClass(int v){ this->a = v; }; ~MyClass(){}; }; void main(){ MyClass*** v = new MyClass**; for (int i = 0; i != 7; i++){ v[i] = new MyClass*; for (int j = 0; j != 3; j++){ v[i][j] = new MyClass(i*j); } } } Здесь два указателя нужны для формирования матрицы, в которой будут располагаться объекты, третий - собственно для размещения там динамических объектов (не MyClass a , а MyClass* a ). Это не единственный пример использования указателей такого рода, чуть ниже будут рассмотрены еще примеры.

4. Указатель как аргумент функции

Для начала создадим два динамических массива размером 4x4 и проинициализируем их элементы некоторыми значениями:

Void f1(int**, int); void main(){ const int size = 4; // объявление и выделение памяти // под другие указатели int** a = new int*; int** b = new int*; // выделение памяти под числовые значения for (int i = 0; i != size; i++){ a[i] = new int; b[i] = new int; // собственно инициализация for (int j = 0; j != size; j++){ a[i][j] = i * j + 1; b[i][j] = i * j - 1; } } } void f1(int** a, int c){ for (int i = 0; i != c; i++){ for (int j = 0; j != c; j++){ cout.width(3); cout << a[i][j]; } cout << endl; } cout << endl; }
Функция f1 выводит значения массивов на экран: первый ее аргумент указатель на двумерный массив, второй - его размерность (указывается одно значение, потому как мы условились для простоты работать с массивами, где количество строк совпадает с количеством столбцов).

Задача : заменить значения элементов массива a соответствующими элементами из массива b , учитывая, что это должно произойти в некоторой функции, которая так или иначе занимается обработкой массивов. Цель: разобраться в способе передачи указателей для их дальнейшей модификации.

  1. Вариант первый. Передаем собственно указатели a и b в качестве параметров функции:

    Void f2(int** a, int** b, int c){ for (int i = 0; i != c; i++){ for (int j = 0; j != c; j++){ a[i][j] = b[i][j]; } } } После вызова данной функции в теле main - f2(a, b, 4) содержимое массивов a и b станет одинаковым.

  2. Вариант второй. Заменить значение указателя: просто присвоить значение указателя b указателю a.

    Void main(){ const int size = 4; // объявление и выделение памяти // под другие указатели int** a = new int*; int** b = new int*; // выделение памяти под числовые значения for (int i = 0; i != size; i++){ a[i] = new int; b[i] = new int; // собственно инициализация for (int j = 0; j != size; j++){ a[i][j] = i * j + 1; b[i][j] = i * j - 1; } } // Здесь это сработает a = b; }
    Однако, нам интересен случай, когда массивы обрабатываются в некоторой функции. Что первое приходит на ум? Передать указатели в качестве параметров нашей функции и там сделать то же самое: присвоить указателю a значение указателя b . То есть реализовать следующую функцию:

    Void f3(int** a, int** b){ a = b; } Сработает ли она? Если мы внутри функции f3 вызовем функцию f1(a, 4) , то увидим, что значения массива действительно поменялись. НО: если мы посмотрим содержимое массива a в main - то обнаружим обратное - ничего не изменилось. Так в чем же причина? Все предельно просто: в функции f3 мы работали не с самим указателем a , а с его локальной копией! Все изменения, которые произошли в функции f3 - затронули только локальную копию указателя, но никак не сам указатель a . Давайте посмотрим на следующий пример:

    Void false_eqv(int, int); void main(){ int a = 3, b = 5; false_eqv(a, b); // Поменялось значение a? // Конечно же, нет } false_eqv(int a, int b){ a = b; } Итак, я думаю, вы поняли, к чему я веду. Переменной a нельзя присвоить таким образом значение переменной b - ведь мы передавали их значения напрямую, а не по ссылке. То же самое и с указателями - используя их в качестве аргументов таким образом, мы заведомо лишаем их возможности изменения значения.
    Вариант третий, или работа над ошибками по второму варианту:

    Void f4(int***, int**); void main(){ const int size = 4; int** a = new int*; int** b = new int*; for (int i = 0; i != 4; i++){ a[i] = new int; b[i] = new int; for (int j = 0; j != 4; j++){ a[i][j] = i * j + 1; b[i][j] = i * j - 1; } } int*** d = &a; f4(d, b); } void f4(int*** a, int** b){ *a = b; }
    Таким образом, в main"е мы создаем указатель d на указатель a , и именно его передаем в качестве аргумента в функцию замены. Теперь, разыменовав d внутри f4 и приравняв ему значение указателя b , мы заменили значение настоящего указателя a , а не его локальной копии, на значение указателя b .

    Кстати, а чего это мы создаем динамические объекты? Ну ладно размер массива не знали, а экземпляры классов мы зачем динамическими делали? Да потому что зачастую, созданный нами объекты свое - они генерились, порождали новые данные/объекты для дальнейшей работы, а теперь пришло им время... умереть [фу, как грубо] уйти со сцены. И как мы это сделаем? Просто:

    Delete(a); delete(b); // Вот и кончились наши двумерные массивы delete(v); // Вот и нет больше двумерного массива с динамическими объектами delete(dyn_array); // Вот и удалился одномерный массив

  3. На данной ноте я хотел бы закончить свое повествование. Если найдется хотя бы пара ребят, которым понравится стиль изложения материала, то я постараюсь продолжить… ой, да кого я обманываю, мне нужен инвайт и все на этом, дайте инвайт и вашим глазам больше не придется видеть это околесицу. Шучу, конечно. Ругайте, комментируйте.

Указатели это чрезвычайно мощный инструмент в программировании. С помощью указателей некоторые вещи в программировании можно сделать намного проще и при этом эффективность работы вашей программы значительно повысится. Указатели даже позволяют обрабатывать неограниченное количество данных. Например, с помощью указателей можно изменять значения переменных внутри функции, при этом переменные передаются в функцию в качестве параметров. Кроме того, указатели можно использовать для динамического выделения памяти, что означает, что вы можете писать программы, которые могут обрабатывать практически неограниченные объемы данных на лету — вам не нужно знать, когда вы пишете программу, сколько памяти нужно выделить заранее. Пожалуй, это самая мощная функция указателей. Для начала давайте просто получим общее представление об указателях, научимся их объявлять и использовать.

Что такое указатели и зачем они нужны?

Указатели похожи на метки, которые ссылаются на места в памяти. Представьте сейф с депозитными ячейками различного размера в местном банке. Каждая ячейка имеет номер, уникальный номер, который связан только с этой ячейкой, таким образом можно быстро идентифицировать нужную ячейку. Эти цифры аналогичны адресам ячеек компьютерной памяти. К примеру, у вас есть богатый дядя, который хранит все свои ценности в своем сейфе. И чтобы обезопасить все свои сбережения, он решил завести меньший сейф, в который положит карту, на которой показано местоположение большого сейфа и указан 16-й пароль от большого сейфа, в котором и хранятся реальные драгоценности. По сути, сейф с картой будет хранить расположение другого сейфа. Вся эта организация сбережения драгоценностей эквивалентна указателям в языке Си. В компьютере, указатели просто переменные, которые хранят адреса памяти, как правило, адреса других переменных.

Идея в том, что зная адрес переменной, вы можете пойти по этому адресу и получить данные, хранящиеся в нем. Если вам нужно передать огромный кусок данных в функцию, намного проще передать адрес в памяти, по которому хранятся эти данные, чем скопировать каждый элемент данных! Более того, если программе понадобится больше памяти, вы можете запросить больше памяти из системы. Как же это работает? Система просто возвращает адрес ячейки памяти, и мы должны сохранить этот адрес в переменной-указателе. Так мы сможем взаимодействовать с данными из указанного участка памяти.

Синтаксис указателей

Если у нас есть указатель, значит мы можем получить его адрес в памяти и данные на которые он ссылается, по этой причине указатели имеют несколько необычный синтаксис, отличающийся от объявления простых переменных. Более того, поскольку указатели — это не обычные переменные, то, необходимо сообщить компилятору, что переменная является указателем и сообщить компилятору тип данных, на которые ссылается указатель. Итак, указатель объявляется следующим образом:

Data_type *pointerName;

где, data_type — тип данных, pointerName — имя указателя.

Например, объявим указатель, который хранит адрес ячейки памяти, в которой лежит целое число:

Int *integerPointer;

Обратите внимание на использование символа * , при объявлении указателя. Этот символ является ключевым в объявлении указателя. Если в объявлении переменной, непосредственно перед именем переменной, добавить этот символ, то переменная будет объявлена как указатель. Кроме того, если вы объявляете несколько указателей в одной строке, каждый из них должен предваряться символом звездочки. Рассмотрим несколько примеров:

// Объявление указателя и простой переменной в одной строке int *pointer1, // это указатель variable; // это обычная переменная типа int // Объявление двух указателей в одно строке int *pointer1, // это указатель с именем pointer1 *pointer2; // это указатель с именем pointer2

Как я и говорил, если имя переменной не предваряется символом * , то это обычная переменная, в противном случае — это указатель. Именно это и показывает пример объявления указателей, выше.

Есть два способа использования указателя:

  1. Использовать имя указателя без символа * , таким образом можно получить фактический адрес ячейки памяти, куда ссылается указатель.
  2. Использовать имя указателя с символом * , это позволит получить значение, хранящееся в памяти. В рамках указателей, у символа * есть техническое название — операция разыименования. По сути, мы принимаем ссылку на какой-то адрес памяти, чтобы получить фактическое значение. Это может быть сложно для понимания, но в дальнейшем постараемся разобраться во всем этом.

Объявление указателя, получение адреса переменной

Для того чтобы объявить указатель, который будет ссылаться на переменную, необходимо сначала получить адрес этой переменной. Чтобы получить адрес памяти переменной (её расположение в памяти), нужно использовать знак & перед именем переменной. Это позволяет узнать адрес ячейки памяти, в которой хранится значение переменной. Эта операция называется — операция взятия адреса и выглядит вот так:

Int var = 5; // простое объявление переменной с предварительной инициализацией int *ptrVar; // объявили указатель, однако он пока ни на что не указывает ptrVar = &var; // теперь наш указатель ссылается на адрес в памяти, где хранится число 5

В строке 3 использовалась операция взятия адреса, мы взяли адрес переменной var и присвоили его указателю ptrVar . Давайте рассмотрим программу, которая наглядно покажет всю мощь указателей. Итак, вот исходник:

#include int main() { int var; // обычная целочисленная переменная int *ptrVar; // целочисленный указатель (ptrVar должен быть типа int, так как он будет ссылаться на переменную типа int) ptrVar = &var; // присвоили указателю адрес ячейки в памяти, где лежит значение переменной var scanf("%d", &var); // в переменную var положили значение, введенное с клавиатуры printf("%d\n", *ptrVar); // вывод значения через указатель getchar(); }

Результат работы программы:

В строке 10 , printf() выводит значение, хранящееся в переменной var . Почему так происходит? Что ж, давайте посмотрим на код. В строке 5 , мы объявили переменную var типа int . В строке 6 — указатель ptrVar на целое значение. Затем указателю ptrVar присвоили адрес переменной var , для этого мы воспользовались оператором присвоения адреса. Затем пользователь вводит номер, который сохраняется в переменную var , помните, что это то же самое место, на которое указывает ptrVar . В самом деле, так как мы используем амперсанд чтобы присвоить значение переменной var в функции scanf() , должно быть понятно, что scanf() инициализирует переменную var через адрес. На этот же адрес указывает указатель ptrVar .

Затем, в строке 10 , выполняется операция «разыменования» — *ptrVar . Программа, через указатель ptrVar , считывает адрес, который хранится в указателе, по адресу попадает в нужную ячейку памяти, и возвращает значение, которое там хранится.

Обратите внимание, что в приведенном выше примере, перед тем как использовать указатель, он сначала инициализируется, это нужно для того, чтобы указатель ссылался на определенный адрес памяти. Если бы мы начали использовать указатель так и не инициализировав его, он бы ссылался на какой угодно участок памяти. И это могло бы привести к крайне неприятным последствиям. Например, операционная система, вероятно, помешает вашей программе получить доступ к неизвестному участку памяти, так как ОС знает, что в вашей программе не выполняется инициализация указателя. В основном это просто приводит к краху программы.

Если бы такие приемчики были позволены в ОС, вы могли бы получить доступ к любому участку памяти. А это значит, что для любой запущенной программы вы могли бы внести свои изменения, например, если у вас открыт документ в Word, вы могли бы изменить любой текст программно. К счастью, Windows и другие современные операционные системы остановит вас от доступа к этой памяти и преждевременно закроют вашу программу.

Поэтому, сразу запоминаем, чтобы избежать сбоя в работе вашей программы, вы всегда должны инициализировать указатели, прежде чем использовать их.

P.S.:Если у вас нет денег на телефоне, и нет возможности его пополнить, но при этом, вам срочно нужно позвонить, вы всегда можете использовать доверительный платеж билайн . Сумма доверительного платежа может быть самой разнообразной, от 50 до 300р.

Немного о памяти

Память можно представить по-разному.

Объяснение для военных на примере взвода. Есть взвод солдат. Численность - 30 человек. Построены в одну шеренгу. Если отдать им команду рассчитаться, у кажого в этой шеренге будет свой уникальный номер. Обязательно у каждого будет и обязательно уникальный. Этот взвод - доступная нам память. Всего нам здесь выделено для работы 30 ячеек. Можно использовать меньше. Больше - нельзя. К каждой ячейке можно обратиться и быть уверенным, что обратился именно к ней. Любому солдату можно дать что-то в руки. Например, цветы. То есть поместить по адресу данные.

Объяснение для Маленького Принца. Здравствуй, Маленький Принц. Представим, что твоему барашку стало одиноко. И ты попросил нарисовать ему друзей. Ты выделил для барашков целую планету (точнее, астероид) по соседству. Эта планета - доступная память. Вся она уставлена коробочками, в которых будут жить барашки. Чтобы не запутаться, все коробочки пронумерованы. Коробочки - это ячейки памяти. Барашек в коробочке - это данные. Допустим, что попался какой-то особо упитанный барашек. Ему понадобится две коробочки. Или даже больше. Барашек - неделимая структура (для нас с тобой, Маленький Принц, это точно так), а коробочки идут подряд. Нет ничего проще. Мы вынимает стенки между двумя рядом стоящими коробочками и кладем туда барашка. Места в коробочке не очень много. И барашек не может свободно развернуться. Поэтому мы всегда знаем, где его голова, а где хвост. И если нам что-то нужно будет сказать барашку, мы обратимся к той коробочке, где у него голова.

Объяснение для хулиганов. Есть забор. Забор из досок. Забор - доступная память. Доска - ячейка памяти. Забор длинный. И чтобы потом похвастаться друзьям, где ты сделал надпись, надо как-то обозначить место. Я знаю, о уважаемый хулиган, что ты нашел бы что-то поинтереснее, чем нумеровать каждую доску. Но в программировании не такие выдумщики. Поэтому доски просто пронумерованы. Возможно, твоя надпись поместится на одну доску. Например, %знак футбольного клуба%. Тогда ты просто скажешь номер и друзья увидят серьезность твоего отношения к футболу. А возможно, что одной доски не хватит. Ничего, главное, чтобы хватило забора. Пиши подряд. Просто потом скажи, с какой доски читать. А что если не подряд? Бывает и не подряд. Например, ты хочешь признаться Маше в любви. Ты назначаешь ей встречу под доской номер 40. Если все пройдет хорошо, ты возьмешь Машу и поведешь ее к доске 10, где заранее написал «Хулиган + Маша = любовь». Если что-то пошло не так, ты поведешь Машу к доске 60, на которой написано все нехорошее, что ты думаешь о Маше. Примерно так выглядит условный переход. То есть оба его исхода помещаются в память заранее. На каком-то этапе вычисляется условие. Если условие выполнилось - переходим к одному месту памяти и начинаем идти дальше подряд. Если условие не выполнилось - переходим к другому месту, с другими инструкциями. И тоже продолжаем выполнять их подряд. Инструкции всегда выполняются одна за другой, если только не встретился переход (с условием или без условия). Ну, или что-то поломалось.

Модель взаимодействия программы с памятью компьютера может быть разной. Будем считать, что для каждой программы выделяется своя обособленная область памяти. Даже если запущены два экземпляра одной программы - память у них будет разная.

В памяти хранятся числа. Ни с чем кроме чисел компьютер работать не умеет. Если вы поместили в память какую-то комплексную структуру, она все равно будет представлена числами. Даже если вы работаете с ней как со структурой. Примером комплексной структуры в терминах языков C и C++ может быть, например, экземпляр структуры или объект класса.

Наименьшей адресуемой величиной в памяти типового компьютера является байт. Это означает, что каждый байт имеет собственный адрес. Для того, чтобы обратиться к полубайту, придется обратиться сначала к байту, а затем выделить из него половину.

Возможно, подобные объяснения кажутся очевидными и даже смешными. Но в действительности имеет значение только формализация. И то, что кажется привычным, в определенных случаях может быть совсем иным. Например, запросто можно задать условие, при котором байт не будет равен 8 битам. И такие системы существуют.

Раз уж мы договорились, что минимальная адресуемая величина - байт, то всю доступную программе память можно представить в виде последовательности байтов.

Система в компьютере двоичная (хотя есть и тернарные машины). В 1 байте 8 бит. Английское bit означает binary digit, то есть двоичный разряд. Получается, что байт может принимать числовые значения от 0 до 2 в 8 степени без единицы. То есть от 0 до 255. Если представлять числа в шестнадцатеричной системе, то от 0x00 до 0xFF.

Представим область памяти.

0x01 0x02 0x03 0x04
0x05 0x06 0x07 0x08
0x09 0x0A 0x0B 0x0C
0x0D 0x0E 0x0F 0x10

В ней лежат числа от 1 до 16. Направление обхода обычно задается слева направо и сверху вниз. Помните, что никакой таблицы на самом деле нет (почти как ложки в Матрице). Она нужна человеку для удобства восприятия. Каждая такая ячейка описывается двумя величинами: значением и адресом. В приведенной таблице значение и адрес совпадают.

Понятие указателя

Указатель - это переменная. Такая же, как и любая другая. Со своими «можно» и со своими «нельзя». У нее есть свое значение и свой адрес в памяти.

Значение переменной-указателя - адрес другой переменной. Адрес переменной-указателя свой и независимый.

Int *pointerToInteger;

Здесь объявляется переменная pointerToInteger. Ее тип - указатель на переменную типа int.

Немного лирики.

Как следует писать звездочку относительно типа и имени переменной? Встречаются, например, такие формы записи, и все они имеют право на существование:

Int* p1; int * p2; int *p3;

Аргументы за первую форму. Чтобы объявить переменную следует указать ее тип, а затем имя. Звездочка является частью типа, а не частью имени. Это также подтверждается тем, что при привидении типов пишется тип со звездочкой, а не тип отдельно. Следовательно, должна писаться слитно с типом. Минус в том, что при объявлении нескольких переменных после объявления int*, только первая из них будет указателем, а вторая будет просто переменной типа int. Не объявляйте несколько указателей в одной строчке. Это не очень хороший стиль.

Аргументы за вторую форму. Есть люди, которым нравится «когда код дышит» Они ставят пробел до скобок и после скобок. И здесь тоже ставят. Возможно, это просто такой компромисс.

Аргументы за третью форму. Если писать так, то с объявлением нескольких указателей в одной строчке проблем быть не должно (хотя это все равно плохой тон). Некоторая идеология нарушается. Но этот стиль - самый распространенный, так как точно видно, что переменная - указатель.

И помните, что компилятору все это безразлично.

Адрес переменной и значение переменной по адресу

Рассмотрим две переменные: целочисленную переменную x и указатель на целочисленную переменную.

Int x; int *p;

Чтобы получить адрес переменной, нужно перед ее именем написать амперсанд.

Данная конструкция будет выполняться справа налево. Сначала с помощью оператора &, примененного к переменной x, будет получен адрес x. Затем адрес x будет сохранен в указателе p.

Есть и обратная операция. Чтобы получить значение переменной по ее адресу, следует написать звездочку перед именем указателя.

Int y = *p;

Такая операция в русском языке называется не слишком благозвучным словом «разыменование». В английском - dereference.

В данном примере с помощью оператора * мы получим то значение, которое находится в памяти по адресу p. Затем мы сохраним его в переменную y. В итоге получится, что значения x и y совпадают.

Все это несложно увидеть на экране.

#include int main(void) { int x; int y; int *p; x = 13; y = 0; p = &x; y = *p; printf("Value of xt%d", x); printf("Address of xt%p", &x); printf("n"); printf("Value of pt%p", p); printf("Address of pt%p", &p); printf("n"); printf("Value of yt%d", y); printf("Address of yt%p", &y); printf("n"); return 0; }

В указанном примере значение x и y будут одинаковы. А также адрес x и значение p.

Адресная арифметика

К указателям можно прибавлять числа. Из указателей можно вычитать числа. На основе этого сделана адресация в массиве. Этот код показывает несколько важных вещей.

Int array = {1, 2, 3, 4, 5}; int *p = &array; p++;

Первая строка простая и понятая. Объявлен массив и заполнен числами от 1 до 5.

Во второй строке объявляется указатель на int и ему присваивается адрес нулевого элемента массива. Некоторые компиляторы разрешают писать такое присвоение так, считая, что имя массива означает адрес его нулевого элемента.

Int *p = array;

Но если вы хотите избежать неоднозначности, пишите явно. Таким образом в p лежит адрес начала массива. А конструкция *p даст 1.

Третья строчка увеличивает значение p. Но не просто на 1, а на 1 * sizeof(int). Пусть в данной системе int занимает 4 байта. После увеличения p на 1, p указывает не на следующий байт, а на первый байт из следующей четверки байтов. Программисту не нужно думать в данном случае о размере типа.

С вычитанием ситуация такая же.

Последний важный момент этого кода в том, как преобразуется обращение к элементу массива. Имя массива - это указатель на его начало. Точка отсчета. Индекс, переданный в квадратных скобках, - смещение относительно начала массива.

Конструкция array[i] будет преобразована компилятором к *(array + i). К начальному адресу массива будет прибавлено число с учетом размерности типа данных. А затем будет взято значение по вычисленному адресу. Обратите внимание, что никто не запрещает написать и так i. Ведь конструкция будет преобразована к виду...

С указателем можно складывать число, представленное переменной или целочисленной константой. Вычесть можно не только число, но и указатель из указателя. Это бывает полезно. А вот сложить два указателя, умножить или разделить указатель на число или на другой указатель - нельзя.

С указателями разных типов нельзя обходиться легкомысленно.

Char c; char *pc = &c; int *pi = pc;

С точки зрения языка C все корректно. А вот в C++ будет ошибка, потому что типы указателей не совпадают.

Int *pi = (int*)pc;

Вот такая конструкция будет принята C++.

Небольшое резюме.

Int x; //объявление переменной целого типа int *p; //объявление указателя на переменную целого типа p = &x; //присвоить p адрес переменной x x = *p; //присвоить x значение, которое находится по адресу, сохраненному в p

Применение указателей

Обычно функция возвращает одно значение. А как вернуть больше одного? Рассмотрим код функции, которая меняет местами две переменные.

Int swap(double a, double b) { double temp = a; a = b; b = temp; }

Пусть есть переменные x и y с некоторыми значениями. Если выполнить функцию, передав в нее x и y, окажется, что никакого обмена не произошло. И это правильно.

При вызове этой функции в стеке будут сохранены значения x и y. Далее a и b получат значения x и y. Будет выполнена перестановка. Затем функция завершится и значения x и y будут восстановлены из стека. Все по-честному.

Чтобы заставить функцию работать так, как нужно, следует передавать в нее не значения переменных x и y, а их адреса. Но и саму функцию тогда нужно адаптировать для работы с адресами.

Void swap(double* a, double* b) { double temp = *a; *a = *b; *b = temp; }

Не стоить забывать о том, что и вызов функции теперь должен выглядеть иначе.

Swap(&x, &y);

Теперь в функцию передаются адреса. И работа ведется относительно переданных адресов.

Если функция должна вернуть несколько значений, необходимо передавать в нее адреса.

Если функция должна менять значение переменной, нужно передавать ей адрес этой переменной.

У тех, кто только начинает программировать на C, есть одна распространенная ошибка. При вводе с клавиатуры с помощью функции scanf() они передают значение переменной, а не ее адрес. А ведь scanf() должна менять значение переменной.

Еще один важный случай, когда указатели крайне полезны - это передача большого объема данных.

Немного посчитаем.

Пусть нам нужно передать в функцию целое число типа int. Таким образом мы передаем в функцию sizeof(int) байт. Обычно это 4 байта (размер будет зависеть от архитектуры компьютера и компилятора). 4 байта - не так много. 4 байта уйдут в стек. Потому что имеет место передача по значению.

Теперь нам нужно передать 10 таких переменных. Это уже 40 байт. Тоже невелика задача.

Вообразим себя проектировщиками Большого Адронного Коллайдера. Вы отвечаете за безопасность системы. Именно вас окружают люди с недобрыми взглядами и факелами. Нужно показать им на модели, что конца света не будет. Для этого нужно передать в функцию collaiderModel(), скажем, 1 Гб данных. Представляете, сколько информации будет сохранено в стек? А скорее всего программа не даст вам стек такого объема без специальных манипуляций.

Когда нужно передать большой объем данных, его передают не копированием, а по адресу. Все массивы, даже из одного элемента, передаются по адресу.

Указатели - это мощный инструмент. Указатели эффективны и быстры, но не слишком безопасны. Потому как вся ответственность за их использования ложится на разработчика. Разработчик - человек. А человеку свойственно ошибаться.

Представим ситуацию.

Int x; int *p;

В большинстве компиляторов C и С++ неинициализированные локальные переменные имеют случайное значение. Глобальные обнуляются.

Если мы захотим разыменовать указатель и присвоить ему значение, скорее всего, будет ошибка.

*p = 10;

Неинициализированный указатель p хранит случайный адрес. Мы честно можем попытаться получить значение по этому адресу и что-то туда записать. Но совсем не факт, что нам можно что-то делать с памятью по этому адресу.

Указатели можно и нужно обнулять. Для этого есть специальное значение NULL.

Int *p = NULL;

Это запись больше соответствует стилю C. В C++ обычно можно инициализировать указатель нулем.

Int *p = 0;

Ловкость рук и никакого мошенничества. На самом деле, если изучить библиотечные файлы языка, можно найти определение для NULL.

#define NULL (void*)0

Для C NULL - это нуль, приведенный к указателю на void. Для C++ все немного не так. Стандарт говорит: «The macro NULL is an implementation-defined C++ null pointer constant in this International Standard. Possible definitions include 0 and 0L, but not (void*)0». То есть это просто 0 или 0, приведенный к long.

Предлагаю вам такую задачку. Папа Карло дал Буратино 5 яблок. Злой Карабас Барабас отобрал 3 яблока. Сколько яблок осталось у Буратино?

Ответ: неизвестно. Так как нигде не сказано, сколько яблок у Буратино было изначально.

Мораль: обнуляйте переменные.

Ссылки

В языке C++ появился новый механизм работы с переменными - ссылки. Функция swap() была хороша, только не слишком удобно применять разыменование. С помощью ссылок функция swap() может выглядеть аккуратнее.

#include void swap(double& a, double& b) { double temp = a; a = b; b = temp; }

А вызов функции тогда будет уже без взятия адреса переменных.

Swap(x, y);

Для взятия адреса переменной и для объявления ссылки используется одинаковый символ - амперсанд. Но в случае взятия адреса & стоит в выражении, перед именем переменной. А в случае объявления ссылки - в объявлении, после объявления типа.

Использование ссылок и указателей - это очень широкая тема. Описание основ на этом закончим.

За мысли и замечания спасибо Юрию Борисову,

Последнее обновление: 27.05.2017

Указатели представляют собой объекты, значением которых служат адреса других объектов (переменных, констант, указателей) или функций. Указатели - это неотъемлемый компонент для управления памятью в языке Си.

Для определения указателя надо указать тип объекта, на который указывает указатель, и символ звездочки *. Например, определим указатель на объект типа int:

Пока указатель не ссылается ни на какой объект. Теперь присвоим ему адрес переменной:

Int x = 10; // определяем переменную int *p; // определяем указатель p = &x; // указатель получает адрес переменной

Указатель хранит адрес объекта в памяти компьютера. И для получения адреса к переменной применяется операция & . Эта операция применяется только к таким объектам, которые хранятся в памяти компьютера, то есть к переменным и элементам массива.

Что важно, переменная x имеет тип int, и указатель, который указывает на ее адрес тоже имеет тип int. То есть должно быть соответствие по типу.

Какой именно адрес имеет переменная x? Для вывода значения указателя можно использовать специальный спецификатор %p :

#include int main(void) { int x = 10; int *p; p = &x; printf("%p \n", p); // 0060FEA8 return 0; }

В моем случае машинный адрес переменной x - 0060FEA8. Но в каждом отдельном случае адрес может быть иным. Фактически адрес представляет целочисленное значение, выраженное в шестнадцатеричном формате.

То есть в памяти компьютера есть адрес 0x0060FEA8, по которому располагается переменная x. Так как переменная x представляет тип int , то на большинстве архитектур она будет занимать следующие 4 байта (на конкретных архитектурах размер памяти для типа int может отличаться). Таким образом, переменная типа int последовательно займет ячейки памяти с адресами 0x0060FEA8, 0x0060FEA9, 0x0060FEAA, 0x0060FEAB.

И указатель p будет ссылаться на адрес, по которому располагается переменная x, то есть на адрес 0x0060FEA8.

Но так как указатель хранит адрес, то мы можем по этому адресу получить хранящееся там значение, то есть значение переменной x. Для этого применяется операция * или операция разыменования, то есть та операция, которая применяется при определении указателя. Результатом этой операции всегда является объект, на который указывает указатель. Применим данную операцию и получим значение переменной x:

#include int main(void) { int x = 10; int *p; p = &x; printf("Address = %p \n", p); printf("x = %d \n", *p); return 0; }

Консольный вывод:

Address = 0060FEA8 x = 10

Используя полученное значение в результате операции разыменования мы можем присвоить его другой переменной:

Int x = 10; int *p = &x; int y = *p; printf("x = %d \n", y); // 10

И также используя указатель, мы можем менять значение по адресу, который хранится в указателе:

Int x = 10; int *p = &x; *p = 45; printf("x = %d \n", x); // 45

Так как по адресу, на который указывает указатель, располагается переменная x, то соответственно ее значение изменится.

Создадим еще несколько указателей:

#include int main(void) { char c = "N"; int d = 10; short s = 2; char *pc = &c; // получаем адрес переменной с типа char int *pd = &d; // получаем адрес переменной d типа int short *ps = &s; // получаем адрес переменной s типа short printf("Variable c: address=%p \t value=%c \n", pc, *pc); printf("Variable d: address=%p \t value=%d \n", pd, *pd); printf("Variable s: address=%p \t value=%hd \n", ps, *ps); return 0; }

В моем случае я получу следующий консольный вывод:

Variable c: address=0060FEA3 value=N Variable d: address=0060FE9C value=10 Variable s: address=0060FE9A value=2

По адресам можно увидеть, что переменные часто расположены в памяти рядом, но не обязательно в том порядке, в котором они определены в тексте программы.

Указатель - переменная, содержащая адрес объекта. Указатель не несет информации о содержимом объекта, а содержит сведения о том, где размещен объект.

Указатели похожи на метки, которые ссылаются на места в памяти. Они тоже имеют адрес, а их значение является адресом некоторой другой переменной. Переменная, объявленная как указатель, занимает 4 байта в оперативной памяти (в случае 32-битной версии компилятора).

Синтаксис указателей

тип *ИмяОбъекта;

Тип указателя- это тип переменной, адрес которой он содержит. Для работы с указателями в Си определены две операции:

  • операция * (звездочка) - позволяет получить значение объекта по его адресу – определяет значение переменной, которое содержится по адресу, содержащемуся в указателе;
  • операция & (амперсанд) - позволяет определить адрес переменной.

Например:

Сhar c; // переменная char *p; // указатель p = &c; // p = адрес c

Объявление указателя, получение адреса переменной

Для того чтобы объявить указатель, который будет ссылаться на переменную, необходимо сначала получить адрес этой переменной. Чтобы получить адрес памяти переменной, нужно использовать знак «&» перед именем переменной. Это позволяет узнать адрес ячейки памяти, в которой хранится значение переменной. Эта операция называется - операция взятия адреса:

Int var = 5; // простое объявление переменной с предварительной инициализацией int *ptrVar; // объявили указатель, однако он пока ни на что не указывает ptrVar = &var; // теперь наш указатель ссылается на адрес в памяти, где хранится число 5

Указатель на указатель

Указатель хранит адрес области памяти. Можно создать указатель на указатель, тогда он будет хранить адрес указателя и сможет обращаться к его содержимому. Указатель на указатель определяется как:

<тип> **<имя>;

Пример работы указателя на указатель:

#include #include #define SIZE 10 void main() { int A; int B; int *p; int **pp; A = 10; B = 111; p = &A; pp = &p; printf("A = %d\n", A); *p = 20; printf("A = %d\n", A); *(*pp) = 30; //здесь скобки можно не писать printf("A = %d\n", A); *pp = &B; printf("B = %d\n", *p); **pp = 333; printf("B = %d", B); getch(); }

Указатели и приведение типов

Так как указатель хранит адрес, можно кастовать его до другого типа. Это может понадобиться, если нужно взять часть переменной, или если мы знаем, что переменная хранит нужный нам тип.

В следующем примере мы пользуемся тем, что размер типа int равен 4 байта, а char 1 байт. За счёт этого, получив адрес первого байта, можно пройти по остальным байтам числа и вывести их содержимое.

#include #include #define SIZE 10 void main() { int A = 10; int *intPtr; char *charPtr; intPtr = &A; printf("%d\n", *intPtr); printf("--------------------\n"); charPtr = (char*)intPtr; printf("%d ", *charPtr); charPtr++; printf("%d ", *charPtr); charPtr++; printf("%d ", *charPtr); charPtr++; printf("%d ", *charPtr); getch(); }

NULL pointer – нулевой указатель

Указатель до инициализации хранит мусор, как и любая другая переменная. Но в, то, же время, этот “мусор” вполне может оказаться валидным адресом. Например, есть указатель. Каким образом узнать, инициализирован он или нет? В общем случае никак. Для решения этой проблемы был введён макрос NULL библиотеки stdlib.

Принято при определении указателя, если он не инициализируется конкретным значением, делать его равным NULL.

Int *ptr = NULL;

По стандарту гарантировано, что в этом случае указатель равен NULL, и равен нулю, и может быть использован как булево значение false. Хотя в зависимости от реализации NULL может и не быть равным 0. То есть указатель можно сравнивать с нулём, или с NULL, но нельзя NULL сравнивать с переменной целого типа или типа с плавающей точкой.

Понравилась статья? Поделитесь ей
Наверх